Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sensors (Basel) ; 23(3)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2276447

ABSTRACT

Lensless holographic microscopy (LHM) comes out as a promising label-free technique since it supplies high-quality imaging and adaptive magnification in a lens-free, compact and cost-effective way. Compact sizes and reduced prices of LHMs make them a perfect instrument for point-of-care diagnosis and increase their usability in limited-resource laboratories, remote areas, and poor countries. LHM can provide excellent intensity and phase imaging when the twin image is removed. In that sense, multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy appears as a single-shot and phase-retrieved imaging technique employing multiple illumination/detection channels and a fast-iterative phase-retrieval algorithm. In this contribution, we review MISHELF microscopy through the description of the principles, the analysis of the performance, the presentation of the microscope prototypes and the inclusion of the main biomedical applications reported so far.


Subject(s)
Holography , Lenses , Microscopy/methods , Lighting , Holography/methods , Algorithms
2.
Comput Biol Med ; 148: 105934, 2022 09.
Article in English | MEDLINE | ID: covidwho-1966454

ABSTRACT

World Health Organization has described the real-time reverse transcription-polymerase chain reaction test method for the diagnosis of the novel coronavirus disease (COVID-19). However, the limited number of test kits, the long-term results of the tests, the high probability of the disease spreading during the test and imaging without focused images necessitate the use of alternative diagnostic methods such as chest X-ray (CXR) imaging. The storage of data obtained for the diagnosis of the disease also poses a major problem. This causes misdiagnosis and delays treatment. In this work, we propose a hybrid 3D reconstruction method of CXR images (CXRI) to detect coronavirus pneumonia and prevent misdiagnosis on CXRI. We used the digital holography technique (DHT) for obtaining a priori information of CXRI stored in created digital hologram (CDH). In this way, the elimination of the storage problem that requires high space was revealed. In addition, Discrete Orthonormal S-Transform (DOST) is applied to the reconstructed CDH image obtained by using DHT. This method is called CDH_DHT_DOST. A multiresolution spatial-frequency representation of the lung images that belong to healthy people and diseased people with the COVID-19 virus is obtained by using the CDH_DHT_DOST. Moreover, the genetic algorithm (GA) is adopted for the reconstruction process for optimization of the CDH image and then DOST is applied. This hybrid method is called CDH_GA_DOST. Finally, we compare the results obtained from CDH_DHT_DOST and CDH_GA_DOST. The results show the feasibility of reconstructing CXRI with CDH_GA_DOST. The proposed method holds promises to meet demands for the detection of the COVID-19 virus.


Subject(s)
COVID-19 , Holography , Algorithms , COVID-19 Testing , Humans , Image Processing, Computer-Assisted
3.
Opt Express ; 30(2): 1723-1736, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1636056

ABSTRACT

We present an automated method for COVID-19 screening based on reconstructed phase profiles of red blood cells (RBCs) and a highly comparative time-series analysis (HCTSA). Video digital holographic data -was obtained using a compact, field-portable shearing microscope to capture the temporal fluctuations and spatio-temporal dynamics of live RBCs. After numerical reconstruction of the digital holographic data, the optical volume is calculated at each timeframe of the reconstructed data to produce a time-series signal for each cell in our dataset. Over 6000 features are extracted on the time-varying optical volume sequences using the HCTSA to quantify the spatio-temporal behavior of the RBCs, then a linear support vector machine is used for classification of individual RBCs. Human subjects are then classified for COVID-19 based on the consensus of their cells' classifications. The proposed method is tested on a dataset of 1472 RBCs from 24 human subjects (10 COVID-19 positive, 14 healthy) collected at UConn Health Center. Following a cross-validation procedure, our system achieves 82.13% accuracy, with 92.72% sensitivity, and 73.21% specificity (area under the receiver operating characteristic curve: 0.8357). Furthermore, the proposed system resulted in 21 out of 24 human subjects correctly labeled. To the best of our knowledge this is the first report of a highly comparative time-series analysis using digital holographic microscopy data.


Subject(s)
COVID-19/diagnostic imaging , Erythrocytes/classification , Holography/methods , Intravital Microscopy/methods , COVID-19/blood , Case-Control Studies , Equipment Design , Holography/instrumentation , Humans , Intravital Microscopy/instrumentation , Preliminary Data , ROC Curve , Sensitivity and Specificity
4.
Opt Lett ; 46(10): 2344-2347, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1229026

ABSTRACT

Rapid screening of red blood cells for active infection of COVID-19 is presented using a compact and field-portable, 3D-printed shearing digital holographic microscope. Video holograms of thin blood smears are recorded, individual red blood cells are segmented for feature extraction, then a bi-directional long short-term memory network is used to classify between healthy and COVID positive red blood cells based on their spatiotemporal behavior. Individuals are then classified based on the simple majority of their cells' classifications. The proposed system may be beneficial for under-resourced healthcare systems. To the best of our knowledge, this is the first report of digital holographic microscopy for rapid screening of COVID-19.


Subject(s)
COVID-19 Testing/methods , COVID-19/blood , Deep Learning , Erythrocytes/pathology , Holography/instrumentation , SARS-CoV-2 , COVID-19/classification , Humans , Image Enhancement/instrumentation , Microscopy/instrumentation , Reproducibility of Results , Sensitivity and Specificity
5.
Nature ; 589(7843): 630-632, 2021 01.
Article in English | MEDLINE | ID: covidwho-1049956
SELECTION OF CITATIONS
SEARCH DETAIL